MINOR PHENOLICS OF APIUM GRAVEOLENS SEEDS

S. K. GARG, S. R. GUPTA and N. D. SHARMA

Department of Chemistry, University of Delhi, Delhi-110007, India

(Revised received 4 July 1978)

Key Word Index—Apium graveolens; Umbelliferae; seeds; myristicic acid; 8-hydroxy-5-methoxypsoralen; umbelliferone.

In continuation of our work [1] on Apium graveolens seeds, 3 more compounds have been isolated from the Et₂O extract. These have been identified as 3-methoxy-4,5-methylenedioxybenzoic acid (myristicic acid), 8-hydroxy-5-methoxypsoralen and umbelliferone. This is the first report of the natural occurrence of myristicic acid. The structure 8-hydroxy-5-methoxypsoralen assigned to the second compound has been confirmed by synthesis from isopimpinellin. This is the first report of its presence in A. graveolens but it has recently been isolated from Angelica archangelica [2].

EXPERIMENTAL

Isolation. The Et₂O extract was chromatographed on Si gel (400 g) using C_6H_6 as eluent. Three fractions were collected, which according to TLC (Si gel; CHCl₃–MeOH, 23:2), each showed the presence of one major spot. Crystallization of these fractions from EtOAc–petrol yielded compounds E_3 . E_4 and E_5 respectively.

Identification. Compound E₃, colourless needles (50 mg). mp 208–10°; R_f 0.66 (CHCl₃–MeOH, 1:3); 0.57 (MeOH–EtOAc, 3:2); (Found: M⁺ 196; C, 55.2; H, 3.9. C₉H₈O₅ requires: C, 55.1; H, 4.1%). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm log (ε) 265 (3.8), 310 (2.9), 340 (1.8); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1675, 1640, 1430, 1325 and 1040; PMR (DMSO-d₆, δ); 3.95 (s, 3H. —OCH₃), 6.26 (s, 2H. —OCH₂O—), 7.27 and 7.42 (two d, J=2 Hz. IH each, two aromatic protons). It gave a positive sulphuric acid–gallic acid test indicating the presence of a methylenedioxy group. Methylation with CH₂N₂ gave the ester, mp 93–4°; (Found: C, 57.4; H, 4.9. C₁₀H₁₀O₅ requires: C, 57.1; H, 4.8%); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm log (ε) 250 (3.2), 280 (3.5), 350 (2.8); IR ν_{KBr} cm⁻¹: 1700, 1632, 1418, 1317 and 1034. Compound E₃ was identical with an authentic sample of myristicic acid [3].

 identical (mmp, UV, IR) with isopimpinellin. Compound $\rm E_4$ is, therefore, 8-hydroxy-5-methoxypsoralen.

Synthesis of 5.8-dihydroxypsoralen. A soln of isopimpinellin (250 mg) in HOAc (10 ml) was treated for 1 hr with conc HNO₃ (1.19 d, 3 ml). The precipitated quinone was filtered, washed with H₂O and dried (P₂O₅). It crystallized from CHCl₃ as an orange coloured powder (125 mg) mp 265°; (Found: C, 61.3; H. 2.2. C₁₁H₄O₅ requires; C, 61.1; H. 1.9%); UV $\lambda_{\rm max}^{\rm MeOH}$ nm log (ϵ) 270 (4.0), 285 sh (4.0), 315 (3.8), 350 (3.1); IR $\nu^{\rm KBr}$ cm⁻¹: 1735, 1640, 1560, 970 and 850.

The quinone (100 mg) in EtOH (15 ml) was reduced by passing SO₂ gas. The pale yellow soln was evapd, the residue washed with H,O and dried (P₂O₅). The quinol crystallized from MeOH–CHCl₃ as pale yellow needles (70 mg) mp 275 : (Found: C, 60.4; H, 3.0. C₁₁H₆O₅ requires: C, 60.6; H, 2.8°_{c0}); UV $\lambda_{\rm max}^{\rm McOH}$ nm log (ϵ) 280 (3.9), 315 (3.7), 350 (3.2): IR $\nu^{\rm KBr}$ cm $^{-1}$: 3400, 1670, 1612, 1095 and 862. The quinol diacetate (Ac₂O/Py) crystallized from CHCl₃–petrol as colourless needles (30 mg), mp 213–4°; (Found: C, 59.9; H, 3.7. C₁₅H₁₀O₇ requires: C, 59.6; H, 3.4°_{c0}); UV $\lambda_{\rm moH}^{\rm McOH}$ nm log (ϵ) 245 (3.8), 295 (3.5), 350 (2.9); IR $\nu^{\rm KBr}$ cm $^{-1}$: 1715, 1630, 1585, 987 and 877; PMR (CDCl₃, δ): 2.6 (s, 6H, 2 × —OCOCH₃); 6.67 (d, d = 10 Hz, 1H, coumarin 3); 7.02 (d, d = 2 Hz, 1H furan); 8.02 (d, d = 2 Hz, 1H furan); 8.2 (d, d = 10 Hz, 1H, coumarin 4).

Synthesis of 8-hydroxy-5-methoxypsoralen. The quinol (50 mg) in dry Me₂CO (20 ml) was selectively methylated with Me₂SO₄ (0.3 ml, 0.9 mol) and NaHCO₃ (1 g) [4, 5]. TLC examination of the crude product showed the presence of one major product. It was purified by preparative-TLC (Si gel, MeOH–CHCl₃, 3:97). It crystallized as yellow needles (20 mg), mp 217–8°: (Found: C, 62.3; H, 3.8. C_{1.2}H₈O₅ requires: C, 62.1; H, 3.5 %). It was identical (mmp, UV, IR) with a natural sample of compound E₄.

Compound E_5 was identified as umbelliferone on direct comparison with an authentic sample.

REFERENCES

- Garg, S. K., Gupta, S. R. and Sharma, N. D. (1978) Phytochemistry 17, 2135.
- Patra, A., Ghosh, A. and Mitra, A. K. (1976) *Indian J. Chem* 14B, 816.
- Seshadri, T. R. and Thiruvengadam, T. R. (1950) Proc. Ind. Acad. Sci. 32A, 25.
- Ahluwalia, V. K. and Chander Parkash (1977) Indian J. Chem. 15B, 808.
- Abu-Mustafa, E. A., El-bay, F. K. A., El-Khrisy, E. A. M. and Fayez, M. B. E. (1973) J. Heterocyl. Chem. 10, 443.